Relative depletion of niobium in some arc magmas and the continental crust : partitioning of K , Nb , La and Ce during melt / rock reaction in the upper mantle

نویسنده

  • Nobumichi Shimizu
چکیده

Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. Previous studies have shown that the major element characteristics of high-Mg# andesites may be produced by melt / rock reaction in the upper mantle. In this paper, new data on partitioning of K, Nb, La and Ce between garnet, orthopyroxene and clinopyroxene in mantle xenoliths, and on partitioning of Nb and La between orthopyroxene and liquid, show that garnet and orthopyroxene have Nb crystal/liquid distribution coefficients which are much larger than those of K and La. Similar fractionations of Nb from K and La are expected in spinel and olivine. For this reason, reactions between migrating melt and large masses of mantle peridotite can produce substantial depletion of Nb in derivative liquids. Modeling shows that reaction between ascending, mantle-derived melts and mantle peridotite is a viable mechanism for producing the trace element characteristics of high-Mg# andesite magmas and the continental crust. Alternatively, small-degree melts of metabasalt a n d / o r metasediment in the subducting slab may leave rutile in their residue, and will thus have large Nb depletions relative to K and La [1]. Slab melts are too rich in light rare earth elements and other incompatible elements, and too poor in compatible elements, to be parental to arc magmas. However, ascending slab melts may be modified by reaction with the mantle. Our new data permit modeling of the trace element effects of reaction between small-degree melts of the slab and mantle peridotite. Modeling shows that this type of reaction is also a viable mechanism for producing the trace element characteristics of high-Mg# andesites and the continental crust. These findings, in combination with previous results, suggest that melt / rock reaction in the upper mantle has been an important process in forming the continental crust and mantle lithosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Petrography, geochemistry and petrogenesis of Damavand volcano: Comparison of different volcanic generations

1-Introduction Damavand volcano was formed by explosive and non-explosive eruptions on the old eroded rock units (Mesozoic and older) of Central Alborz during the Quaternary period and formed two huge cone (Old and Young Damavand). Davidson et al. (2004) determined the time of Old-Damavand activity from 1800 to 800 thousand years ago by measuring Ar/Ar and U-Th/He methods. According to their ...

متن کامل

Petrochemical Characteristics of Neogene and Quaternary Alkali Olivine Basalts from the Western Margin of the Lut Block, Eastern Iran

The Nayband strike-slip fault forms the western margin of the micro-continental Lut block in Eastern Iran. Neogene and Quaternary mafic volcanic rocks collected near Tabas, along the northern part of the fault (NNF; 15 Ma), and further to the south, along the middle part of the fault (MNF; 2 Ma), are within-plate sodic-series alkali olivine basalts with high TiO2 and up to >16% normative nephel...

متن کامل

Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents

Arc magmas and the continental crust share many chemical features, but a major question remains as to whether these features are created by subduction or are recycled from subducting sediment. This question is explored here using Th/La, which is low in oceanic basalts (<0 2), elevated in the continents (>0 25) and varies in arc basalts and marine sediments (0 09–0 34). Volcanic arcs form linear...

متن کامل

Geochemistry and Tectonic Setting of Pleistocene Basaltic Lava Flows in the Shahre-Babak Area, NW of Kerman, Iran: Implication for the Evolution of Urumieh- Dokhtar Magmatic Assemblage

Pleistocene basaltic lava flows, consisting of trachybasalt and basaltic trachyandesite, cover an area north-northwest of Shahre-Babak in southeastern Iran. The whole rock chemistry indicates that the lavas are dominantly alkaline and mildly calc-alkaline. Variation diagrams of SiO2 with major and trace elements are consistent with fractional crystallization processes involving olivine, pyroxen...

متن کامل

Geochemistry and Sr-Nd Isotopes of the Oligo-Miocene Bagh-e-Khoshk Granitoid in SE of the UDMA, Iran: Implications for Petrogenesis and Geodynamic Setting

Oligo-Miocene Bagh-e-Khoshk granitoid stock is intruded into the Eocene volcanic rocks in the southeastern part of the Urumieh-Dukhtar Magmatic assemblage in Iran. The granitoids are mainly consisting of diorite, quartz diorite and granodioritic rock types. They are metaluminous to slightly peraluminous, medium to high K calc-alkaline, with SiO2 ranging from 50.2 to 66 wt.%. The majo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002